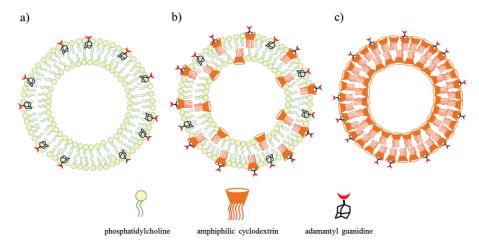


OP-14


APPLICATION OF ADAMANTYL AMINOGUANIDINES IN FUNCTIONAL SELF-ASSEMBLED NANOVESICLES

<u>Marina Šekutor</u>,^{a,*} Adela Štimac,^b Matea Tokić,^c Ajasja Ljubetič,^d Tomislav Vuletić,^e Josip Požar,^c Katarina Leko,^c Marko Hanževački,^f Leo Frkanec,^{a,*} Ruža Frkanec^{b,*}

^a Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia

- ^b Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, HR-10000 Zagreb, Croatia
- ^c Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
- ^d National Institute of Chemistry, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- ^e Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia
- ^f Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
- * msekutor@irb.hr

Combination of a lipophilic adamantyl subunit and a highly polar guanidine moiety affords adamantyl aminoguanidines, compounds with membrane compatible features capable of binding to complementary molecules possessing phosphate groups.^[1] We recently showed that adamantyl aminoguanidines can effectively be incorporated into liposomes and the resulting liposome formulations were capable of recognizing complementary liposomes.^[2] We therefore turned out attention to preparing multicomponent self-assembled supramolecular nanovesicles capable of recognition and binding to fluorescently labelled DNA.^[3] Our findings suggest that such nanovesicles (Figure 1) could potentially be applied as nonviral gene delivery vectors.

Figure 1. Schematic representation of the prepared functional supramolecular systems consisting of adamantyl aminoguanidines and different liposomes and vesicles.

- [1] M. Šekutor, *Synlett* **2015**, *26*, 2627–2632.
- [2] M. Šekutor, A. Štimac, K. Mlinarić-Majerski, R. Frkanec, Org. Biomol. Chem. 2014, 12, 6005–6013.
- [3] A. Štimac, M. Tokić, A. Ljubetič, T. Vuletić, M. Šekutor, J. Požar, K. Leko, M. Hanževački, L. Frkanec, R. Frkanec, Org. Biomol. Chem. 2019, 17, 4640–4651. https://doi.org/10.1039/c9ob00488b