

OP-2

EXPLORING PHOTOREACTIONS POTENTIALLY TRIGGERED BY EXCITED STATE ANTIAROMATICITY RELIEF

Henrik Ottosson,* Tomas Slanina, Josene Toldo, Rabia Ayub, Kjell Jorner

Department of Chemistry - Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden * henrik.ottosson@kemi.uu.se

Baird's rule tells that the electron counts for aromaticity and antiaromaticity in the first $\pi\pi^*$ triplet excited state (T₁) of simple annulenes are opposite to those in the ground state (S₀),^[1] and it has been shown that the rule also extends to the lowest singlet excited state (S₁).^[2,3] Motivated by this aromaticity/antiaromaticity switch we earlier labelled benzene as a molecular "Dr. Jekyll and Mr. Hyde".^[4] Now, to what extent is photoreactivity of S₀ state aromatic molecules triggered by relief of excited state antiaromaticity?

We recently showed in a combined experimental and computational study of cyclopropyl (cPr) substituted annulenes that the aptitude for cPr ring-opening in the T₁ state is strongly linked to the number of π -electrons of the annulene.^[5] T₁ state antiaromaticity in 6π -electron (hetero)cycles lowers the activation energy for cPr ring-opening by 3–8 kcal/mol when compared to cases with the cPr group attached to π -conjugated, yet, T₁ nonaromatic cycles. We will now present results revealing to what extent excited state antiaromaticity relief triggeres various photoreactions that progress in the S₁ state instead of the T₁ state. Particular focus will be given to the photorearrangement of benzene to benzvalene and the photochemical formation of substituted bicyclo[3.1.0]hex-2-enes in protic nucleophilic media. In this context, we will also discuss the potential involvement of structures influenced by excited state homoaromaticity.^[6]

REFERENCES

- [1] N. C. Baird, J. Am. Chem. Soc. 1972, 94, 4941–4948.
- [2] H. Ottosson, Nat. Chem. 2012, 4, 969–971.
- [3] M. Rosenberg, C. Dahlstrand, K. Kilså, H. Ottosson, Chem. Rev. 2014, 114, 5379–5425.
- [4] R. Papadakis, H. Ottosson, Chem. Soc. Rev. 2015, 44, 6472–6493.
- [5] R. Ayub, R. Papadakis, K. Jorner, B. Zietz, H. Ottosson Chem. Eur. J. 2017, 23, 13684–13695.
- [6] K. Jorner, B. Jahn, P. Bultinck, H. Ottosson, Chem. Sci. 2018, 9, 3165–3176.