

PI -7

ORIENTED EXTERNAL ELECTRIC FIELDS AS EFFECTORS IN CHEMISTRY

Sason Shaik

Institute of Chemistry, Hebrew University, Jerusalem 919407, Israel sason.shaik@gmail.com

The talk will discuss the wide-ranging potential of using **oriented external-electric-fields (OEEFs)** as **new effectors of chemical change**.^[1–5] Generally speaking, an OEEF along the direction of electron reorganization from reactants to products, will catalyze/inhibit at will nonpolar reactions, while orientations of the OEEF off the "reaction axis" will control selectivity patterns and chiral discrimination.^[1,3] The field's direction will similarly affect bonds, molecular structures and aggregation.^[5]

I shall discuss OEEF effects, using a selection from the following topics: (a) Control of bond length and strength, and molecular structures,^[1,5] (b) control, at will, of non-redox chemical reactions by catalyzing or inhibiting them through a flip of the field's direction, (c) control of regioselectivity (e.g., C=C vs. C-H activation by oxoiron reagents (e.g., P450 like), *exo/endo* selectivity in Diels-Alder reactions), (d) control of spin-state selectivity, (e) control of reaction mechanisms, (f) the dilemma of electric fields in enzymes,^[5] and (g) control of chiral discrimination and enantioselectivity.^[3]

Some future prospects may be discussed as well: (a) the ability of OEEF to act as tweezers that orient the reactants in space and catalyzes their reactions, (b) the role of OEEFs in self-assembly.

As shall be described, there are by now **a variety of experimental techniques** to implement the OEEF idea,^[2,5] including **scalable options**.^[2b] The field is rapidly expanding. As experimental techniques mature further, chemical transformations may become an exercise in zapping oriented molecules with OEEFs

REFERENCES

- [1] S. Shaik, D. Mandal, R. Ramanan, Nature Chem. 2016, 8, 1091–1098.
- (a) A. C. Aragonès, N. L. Haworth, N. Darwish, S. Ciampi, N. J. Bloomfield, G. G. Wallace, I. Diez-Perez, M. L. Coote, *Nature*, 2016, 531, 88–91; (b) The use of electric fields to catalyse chemical reactions is in principle scalable. See: Z. Lin, X. Zeng, S. Yu, *Food Bioprocess Technol.* 2012, *5*, 2637-2645
- [3] Z. Wang, D. Danovich, R. Ramanan, S. Shaik, J. Am. Chem. Soc. 2018, 140, 13350–13359.
- [4] A recent feature article: J. Howgego [a feature editor at New Scientist]: *Field of Influence, Chemistry World*, **2018**, *22 January 2018*, 1–9.
- [5] S. Shaik, R. Ramanan, D. Danovich, D. Mandal, *Chem. Soc. Rev. Tutorial*, **2018**, 47, 5125–5145.